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SUMMARY

Recent advances in 3D culture systems have led to
the generation of brain organoids that resemble
different human brain regions; however, a 3D orga-
noid model of the midbrain containing functional
midbrain dopaminergic (mDA) neurons has not
been reported. We developed a method to differen-
tiate human pluripotent stem cells into a large multi-
cellular organoid-like structure that contains distinct
layers of neuronal cells expressing characteristic
markers of human midbrain. Importantly, we de-
tected electrically active and functionally mature
mDA neurons and dopamine production in our 3D
midbrain-like organoids (MLOs). In contrast to hu-
man mDA neurons generated using 2D methods or
MLOs generated from mouse embryonic stem cells,
our human MLOs produced neuromelanin-like gran-
ules that were structurally similar to those isolated
from human substantia nigra tissues. Thus our
MLOs bearing features of the human midbrain may
provide a tractable in vitro system to study the hu-
man midbrain and its related diseases.

INTRODUCTION

The ability to make functional neural cells from human pluripo-

tent stem cells (hPSCs) provides a unique opportunity to study
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human brain development and neurological disorders. Despite

much progress, most protocols used to differentiate hPSCs

into neurons are based on 2D methods that are unlikely to reca-

pitulate the complexity and function of 3D in vivo neural circuits

(Sasai, 2013). These limitations have prompted the development

of 3D organoid models that mimic the organization and function

of brain parts using hPSCs (Lancaster et al., 2013; Mariani et al.,

2015; Muguruma et al., 2015; Paşca et al., 2015; Qian et al.,

2016). In contrast to single-cell-type cultures, organoids consist

of multiple cell types that self-organize spatially and can display

enhanced cellular maturation and functionality, possibly due to

themore appropriate 3D niche environment (Kelava and Lancas-

ter, 2016).

Extensive research has focused on generating midbrain dopa-

minergic (mDA) neurons from hPSCs in recent years particularly

because the selective loss of mDA neurons is a key pathological

feature of Parkinson’s disease (PD) (Grealish et al., 2014). Here,

we report a method for differentiating hPSCs into human

midbrain-like organoids (hMLOs) that recapitulate features of

the midbrain andmay be useful as a model for studying midbrain

function and dysfunction.
RESULTS

Generation and Characterization of hMLOs from hPSCs
To generate midbrain organoids, we applied a guided self-orga-

nizing principle to hPSC culture. First, human embryonic stem

cells (hESCs) were dissociated to single cells to form uniformly

sized (approximately 400 mm in diameter) embryoid bodies

(EBs) in low-attachment, V-shaped 96-well dishes (Figure 1A).
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Figure 1. Generation and Characterization of hMLOs from hPSCs

(A) Schematic diagrams illustrating the overall strategy to generate hMLOs. Differential interface contrast (DIC) images illustrate the typical morphology of cells at

each stage. SBNC: SB431542, Noggin, and CHIR99021; SF: SHH-C25II and FGF8; BGAC: BDNF, GDNF, ascorbic acid, and db-cAMP. Scale bars, 500 mm.

(B) Left: cryosection of an hMLO at day 35 stained for Ki67 and MAP2. Right: a zoom-in view of the white box. White scale bar, 200 mm. Yellow scale bar, 10 mm.

(C) Quantification of the percentage of Ki67+ and MAP2+ cells at day 25 and 35 hMLOs by FACS analysis. Error bars represent mean ± SEM (n = 3, *p < 0.05,

Student’s t test).

(D) Immunostaining of EdU, OTX2, and aPKC at the apical region of a neuroepithelium (NE). Scale bar, 20 mm.

(legend continued on next page)
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To promote neuroectodermal differentiation toward a floor plate,

these EBs were simultaneously treated with dual-SMAD inhibi-

tion factors (Noggin and SB431542) and aWnt pathway activator

(CHIR99021). The resulting EBswere patterned toward amesen-

cephalic fate upon addition of sonic hedgehog (SHH) and FGF8

(Arenas, 2014; Chambers et al., 2009; Kirkeby et al., 2012) (Fig-

ure 1A). At day 7, nascent neural organoids expressed markers

of mDA progenitors such as FOXA2, OTX2, CORIN, and

LMX1A (Figure S1A). Subsequently, each neuroectodermal

spheroid was embedded in Matrigel to promote growth and

organization in 3D (Figure 1A) and then transferred to a tissue

culture plate containing neuronal media supplemented with neu-

rotrophic factors (Figure 1A). The organoids were cultured in this

manner on an orbital shaker until the day of analysis. These neu-

ral organoids grew to more than 2mm in diameter in 30 days and

contained multiple neuroepithelia (Figures 1A, S1B, and S1C).

Immunohistochemical analysis revealed that these neuroepithe-

lia exhibited apical-basal polarity based on the localization of

atypical protein kinase C (aPKC) (Figures S1D and S1E). Ki67+

proliferating cells and MAP2+ neurons were detected at the api-

cal and the basal surface, respectively (Figure 1B). FACS anal-

ysis revealed that the percentage of Ki67+ cells decreased

from 51% at day 25 to 19% at day 35; conversely, the proportion

of MAP2+ cells increased 3.6-fold (Figure 1C). These data indi-

cate that cells in the hMLOs gradually transitioned from prolifer-

ating neuroprogenitors to post-mitotic mature neurons. To

further characterize the developing midbrain neuroepithelia, we

labeled proliferating progenitor cells with EdU and stained for

OTX2, a transcription factor that separates the midbrain from

the hindbrain. OTX2 expression was observed in cells within

the apical surface and extended to the intermediate region

of the neuroepithelia (Figure 1D). Approximately 80% of all cells

were OTX2+ and 35%of the cells within neuroepithelia were dou-

ble positive for EdU and OTX2 (Figure 1E), demonstrating that

proliferating cells near the apical region of hMLOs were midbrain

progenitors.

Next, we examined the cytoarchitecture of the neural organo-

ids at day 35. Similar to the layering of the murine embryonic

midbrain floor plate that eventually gives rise to mDA neurons

(Baizabal and Covarrubias, 2009), the hMLOs at day 35 showed

three layers: the proliferative ventral zone (VZ), where neural pro-

genitors reside; the intermediate zone (IZ), which immature mDA

neurons pass through as they migrate ventrally; and the mantle

zone (MZ), wherematuringmDA neurons begin to express genes

associated with the synthesis of dopamine (DA) (Figure 1F). In

the VZ and IZ, the midbrain progenitors expressed MASH1 and
(E) Percentages of OTX2+ and OTX+/EdU+ cells at the apical region of an NE. Err

(F) Schematic of the laminar structure in the hMLOs (bas., basal; ap., apical; MZ

(G) Cryosection of a day 35 hMLO stained for MAP2 and MASH1. Scale bar, 50

(H) EdU labeling and OTX2 immunostaining of a day 35 hMLO. Scale bar, 20 mm

(I) Cryosection of a day 35 hMLO stained for NURR1 and MASH1. Scale bar, 20

(J) Cryosection of an hMLOatdays4, 14, and24stained for FOXA2 (floor plate progen

(K and L) Immunostaining of FOXA2 and TH of an hMLO at day 45 (K). Scale bar

mean ± SEM (n = 3).

(M and N) Cryosection of a day 45 hMLO labeled for LMX1A and TH (M). Scale

SEM (n = 3).

(O and P) Immunostaining of MZ cells at day 60 with DAT and TH antibodies, z

quantifications are shown in (P). Error bars represent mean ± SEM (n = 3). Scale

See also Figure S1.
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OTX2 (Figures 1G and 1H). We also detected the orphan nuclear

receptor NURR1, which is expressed in post-mitotic mDA pro-

genitors, in the IZ (Figure 1I) (Arenas et al., 2015). These data

suggest that the features of our in vitro hMLOs are similar to

those of early in vivo midbrains in the aspect of developing neu-

roectoderm toward floor plate.

Identification and Verification ofmDANeurons in hMLOs
Several studies have demonstrated that FOXA2, a floor plate

marker, identifies neuronal progenitors that eventually become

mDA neurons (Sasaki et al., 1997). We observed FOXA2 expres-

sion in developing hMLOs as early as day 4 (Figure 1J). Intrigu-

ingly, at day 14, FOXA2 expression became restricted to specific

domains within the neuroepithelia, and by day 24, FOXA2-ex-

pressing cells presumably had migrated radially to the MZ (Fig-

ure 1J), where they began to express tyrosine hydroxylase

(TH), a defining marker of DA neurons. Indeed at day 45 the ma-

jority of FOXA2+ cells (54%) also expressed TH (Figures 1K and

1L). Given that some ventral forebrain progenitors could also ex-

press FOXA2 (Liu and Zhang, 2011), we sought to examine the

expression of other mDA neuroprogenitor markers such as

LMX1A and OTX2 together with FOXA2 in the hMLOs at day

14 and 45. We observed that 22% of cells at day 14 were double

positive for LMX1A and OTX2 (Figures S1F and S1G). At day 45,

38%of all cells were LMX1A+, andmost of them (81%) were also

FOXA2+ (Figures S1H and S1I). We further observed that a major

fraction of LMX1A+ cells (58%) expressed TH at this time (Fig-

ures 1M and 1N). These data strongly suggest that the majority

of TH+ neurons in the hMLOs likely originated from FOXA2+

and LMX1A+ progenitors, which were a subset of OTX2+ cells.

In addition, we observed robust expression of the mDA markers

in hMLOs by qPCR (Figure S1J). Taken together, these data

demonstrated a time-dependent induction of floor plate precur-

sors and their subsequent differentiation into TH+ mDA neurons

within the developing hMLOs.

To further quantify the neuronal populations within the hMLOs,

we conducted FACS analysis. At day 35, 6% of the MAP2+ neu-

rons in hMLOs co-expressed TH, and the number increased

significantly to 22% by day 60 (Figures S1K–S1M). Approxi-

mately 29% were also positive for DA transporter (DAT) (Figures

1O and 1P). Intriguingly, at day 60, we observed that some of the

TH+ neurons were also positive for GIRK2 (G protein-gated

inwardly rectifying K+ channel 2), which is an important protein

with enriched expression in A9 subtype mDA neurons (Fig-

ure S1N). In addition, we observed occasional cells double-pos-

itive for TH and Calbindin, suggesting that they are likely to be
or bars represent mean ± SEM (n = 7).

, mantle zone; IZ, intermediate zone; VZ, ventral zone).
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A10-like subtype mDA neurons (Figure S1O). In sum, these data

suggest that our neural organoids, after long-term culturing, pro-

duced A9-like mDA neurons which expressed TH, DAT, and

GIRK2.

Transcriptional Characterization of hMLOs
While the hMLOs consist of DA neurons that are typical of

midbrain tissue, the cellular heterogeneity and structure of the

organoid culture might allow us to model aspects that cannot

be studied using 2D culture. To investigate this hypothesis, we

generated gene expression profiles for our organoid model sys-

tem and 2D-grown mDA neurons (Figures S2A–S2D). Indeed, a

large number of genes show differential expression between

hMLOs and 2D-DA neurons (Figure 2A, Table S1). To test if the

differences of hMLOs and 2D-DA neurons in transcriptomes

reflect an upregulation of genes characteristic of brain develop-

ment, we performed RNA-seq analyses from 10 human prenatal

midbrain samples. A cluster analysis using the differentially ex-

pressed genes between hMLOs and 2D-DA neurons suggest

that the hMLOs indeed show upregulation of genes that are

expressed in human prenatal midbrain samples (Figure 2B).

The genes that are differentially expressed in hMLOs compared

to 2D-DA neurons significantly overlapped with differentially

expressed genes in prenatal midbrain compared to 2D-DA neu-

rons (Figures 2C, 2D, and S2E and Table S2, decreased expres-

sion: p = 2.2e�248; increased expression: p = 4.13e�313).

Among the genes, which are expressed in hMLOs and prenatal

midbrain, but not in 2D-DA neurons, were those genes ex-

pressed in additional cell types, such asOLIG3 (oligodendrocyte

gene) and SLC1A3 (glial cell gene) (Figure 2E). mDA neuron-spe-

cific genes were commonly expressed in all samples (Figure 2F).

A comparison with publicly available 2D-DA neuron expression

data (Lin et al., 2016) and data from adult midbrain, forebrain,

and hindbrain (Consortium, 2015) further suggests that hMLOs

are closer to prenatal midbrain (Figure S2F). Together, this anal-

ysis of transcriptome profiles indicates that hMLOs indeed

resemble aspects of gene expression profiles of prenatal

midbrain that appear to be absent frommDA neurons generated

by the conventional 2D method.

Identification of Neuromelanin and A9-like mDA
Neurons in Human MLOs
During the long-term culture of the hMLOs, we observed sparse,

black/brown-colored deposits in hMLOs by light microscopy

after approximately 2 months. Furthermore, the number of these

deposits gradually increased over time (Figure 3A). We hypothe-

sized that these dark deposits were neuromelanin (NM), which

are insoluble, black/brown granular pigments that accumulate

in the substantia nigra pars compacta (SNpc) in humans and pri-

mates (Sulzer et al., 2000). To test this hypothesis, we performed

Fontana-Masson staining and found that these deposits stained

positive (Figures 3B and S3A). As shown in Figure 3B, large,

rough, and darkly stained granules were observed within the

neuronal cytosol, which were similar to the stained granules in

human postmortem SNpc sections (Figure 3C). Some of these

granules in the hMLOs could be observed outside of neuronal

cells, indicating that these NM granules could be secreted

from mDA neurons within the hMLOs (Figure 3B). In contrast,

we failed to detect Fontana-Masson-positive granules from
2D-DA neurons (Kriks et al., 2011) (data not shown) or human

cerebral organoids (hCOs) (Figures S3B and S3C) grown at a

comparable number of days in vitro. Over time the amount of

NM granules increased drastically (Figure 3D). Importantly,

scanning electron microscopy and atomic force microscopy

(AFM) revealed that NM granules isolated from the hMLOs ex-

hibited similar morphological characteristics as those isolated

from human postmortem SNpc tissue (Figures 3E and 3F, Fig-

ures S3D–S3F, and Table S3).

Given that NM is a byproduct of DA synthesis in mDA neurons,

the addition of an exogenous dopamine precursor (L-DOPA) or

DA is expected to accelerate the accumulation of NM in younger

hMLO (Fedorow et al., 2005). Indeed, we observed a robust dis-

tribution of NM-like granules in the hMLOs at day 45 following

a 10-day treatment of L-DOPA (50 mM) or DA (50 mM), whereas

no NM-like granules were observed in untreated hMLOs or

L-DOPA-treated hCOs (Figures 3G and S3G). To determine

whether the NM-containing cells were TH+, we immunostained

adjacent sections from the same hMLO and observed TH+ cells

within the same area that displayedNM-like granules (Figure 3H).

NM-like granules have been observed primarily in primates, but

not in mice (Fedorow et al., 2005). Intriguingly, no NM-like gran-

ules were observed in mouse ESC-derived MLOs (mMLOs) that

contained TH+ neurons (Figure 3H). These data indicated that

only human mDA neurons grown in 3D could produce NM-like

granules in situ.

To further characterize the NM-containing mDA neurons, we

reasoned that NM-containing cells should be an enriched popu-

lation of A9 mDA neurons that are present in SNpc, and we thus

used FACS to sort out NM-containing cells from hMLOs (Figures

S3H and S3I). With this method, we could prospectively isolate

NM+ cells in the hMLOs (approximately 7%of total cells) (Figures

S3J and S3K). We confirmed that isolated NM-containing cells

were enriched with mDA neurons by immnostaining replated

NM+ cells with antibodies against MAP2 and TH (Figure S3L).

We performed reverse-transcription-specific target amplifica-

tion on individual NM+ sorted cells and noted that the vast major-

ity of NM-sorted cells (87%) expressed MAP2, but among these

cells some were negative for TH (Figure S3M), possibly due to

the uptake of extracellularly released NM granules by non-dopa-

minergic neurons. We then focused our analysis on TH+/MAP2+

cells and characterized their subtype identity by the Fluidigm

Biomark Array. Not surprisingly, most cells expressed pan-DA

neuronal markers including EN1/2 (Figure S3N). We also noted

that SNpc-related genes were more highly expressed in NM-

containing cells, compared to ventral tegmental area (VTA)-

related genes (Figure S3N) (Poulin et al., 2014), consistent with

the known association of NM with A9, but not A10, neurons.

Expression of markers indicative of other neuronal lineages

was largely absent (Figure S3O). Collectively, these data indicate

that the NM-containing neurons in the hMLOs preferentially ex-

pressed markers of SNpc, but not VTA, which corroborates

well with our immunostaining data (Figure 1).

Functional Maturation of Dopaminergic Neurons in
hMLOs
To test whether the neurons in the hMLOswere electrically active

and functionally mature, we sliced hMLOs into 350 mm sections

and performed acute, targeted, whole-cell patch recordings
Cell Stem Cell 19, 248–257, August 4, 2016 251
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Figure 2. Transcriptional Characterization of hMLOs

(A) Heatmap showing differentially expressed genes between 2D-DA neurons and hMLOs, sorted by fold change (related to Table S1).

(B) Heatmap and clustering of expression data from 2D-DA neurons, hMLOs, and prenatal midbrain. The correlation of normalized gene expression using

differentially expressed genes between 2D-DA neurons and hMLOs was used to estimate the distance between samples.

(C) Venn diagram indicating the overlap of genes that show upregulation or downregulation in hMLOs and prenatal midbrain compared to 2D-DA neurons

(significance was estimated using Fisher’s exact test).

(D) Heatmap showing genes that are differentially expressed between 2D-DA neurons and hMLOs and human prenatal midbrain, sorted by fold change (related to

Table S2).

(E and F) Example genes expressed in prenatal midbrain and hMLOs, but not in 2D-DA neurons (E), and example genes commonly expressed in prenatal

midbrain, hMLOs, and 2D-DA neurons (F). Black: normalized read count, blue: split reads that map to two exons. Shown is the average across all samples.

See also Figure S2.
(Figure 4A) (Paşca et al., 2015; Yuan et al., 2015). In voltage-

clamp mode, neurons within the hMLOs showed fast, inactivat-

ing inward and outward currents, which likely corresponded to

the opening of voltage-dependent sodium (Na+) and potassium
252 Cell Stem Cell 19, 248–257, August 4, 2016
(K+) channels, respectively (Figure 4B). The peak voltage-gated

Na+- and K+-channel currents increased significantly from day

33 to day 65 (Figure 4C). Consistently, we observed a consider-

able decrease in membrane resistance (Rm) and increase in



Figure 3. Identification of Neuromelanin in hMLOs

(A) Appearance of dark granules in hMLOs at day 112. Note that dark pigments were localized within the neuronal compartment (arrows) as well as the extra-

cellular compartment (arrowheads). Scale bar, 200 mm.

(B) Fontana-Masson staining to reveal neuromelanin (NM)-like granules within an hMLO. Note the presence of NM-like granules in both intracellular and

extracellular compartments (blue and black arrowheads, respectively). Black scale bars, 100 mm. Red scale bar, 20 mm. (B0) is an enlarged view of a region in (B).

(B0 0) is an enlarged view of a region in (B0).
(C) Fontana-Masson staining of human postmortem midbrain tissue. Black scale bars, 1 mm. Red scale bar, 200 mm. (C0) is an enlarged view of a region in (C)

made from tiling multiple images of a large area. (C0 0) is an enlarged view of a region in (C0).
(D) NM content measurement in hMLOs. Error bars represent mean ±SEM (n = 3, respectively).

(E and F) SEM image of isolated NMgranules (E) in a day 122 hMLO and (F) in human postmortemmidbrain tissue (see also Figures S3D–S3F and Table S3). Scale

bar, 200 nm.

(legend continued on next page)

Cell Stem Cell 19, 248–257, August 4, 2016 253



membrane capacitance (Cm), and these changes correlatedwith

the functional maturation of the neurons (Table S4). Action po-

tentials (APs) were elicited when we depolarized the membrane

in current-clamp mode (Figure 4D) and APs could be elicited

from the majority of hMLO neurons (69.23%, n = 26) (Figure 4E

and Table S4). Next, we investigated whether neurons within

the hMLOs exhibited spontaneous synaptic transmission

in situ, and we found that most of the recorded neurons showed

spontaneous excitatory postsynaptic currents (sEPSCs) as well

as spontaneous inhibitory postsynaptic currents (Figure 4F). In

addition, we observed large-amplitude excitatory postsynaptic

potentials (EPSPs > 20 pA) in response to extracellular electrical

stimulation, demonstrating that the neurons inside the hMLOs

participated in network activity (Figure 4G). More than 20% of

neurons within the hMLOs showed rhythmic discharges, with

an average frequency of 2.78 Hz (Figures 4H and 4I), and

rebound depolarizations resulted in AP generation after short hy-

perpolarization of neurons (Figure 4J), which are characteristics

of mDA neurons (Pfisterer et al., 2011). The application of the

specific D2/D3 receptor agonist quinpirole (1 mM) markedly sup-

pressed the firing of recorded neurons (Figures 4K and 4L), indi-

cating the presence of functional dopamine receptors in mDA

neurons within the hMLOs. Intriguingly, post hoc immunohisto-

chemistry of the recorded neurons (labeled with biocytin) in the

hMLOs revealed that most (n = 8/10) were TH+, indicating that

the recorded neurons were indeed mDA neurons (Figure 4M).

Furthermore, high-performance liquid chromatography (HPLC)

measurements showed that the DA content within hMLOs grad-

ually increased as they matured (Figure 4N). Taken together,

these data indicate that mDA neurons within the hMLOs pro-

duced DA, exhibited mature neuronal properties, and were

able to form synapses with other neurons within the hMLOs.

DISCUSSION

Here, we have demonstrated that hESCs can be steered to

differentiate into midbrain progenitors, which subsequently

self-organize into 3D hMLOs comprising distinct cell layers

with functional mDA neurons, but not the forebrain or the hind-

brain (Figures S2G and S2H). Most approaches that have been

developed so far have utilized 2D monolayer cultures on flat

and rigid substrates to differentiate hPSCs into mDA neurons

(Arenas et al., 2015). Although 2D cell culture has proven to be

a valuable method for cell-based studies, lack of the 3D environ-

ment and multiple cell types has often led to inaccurate cellular

responses and failure to recapitulate important physiological

features of tissue in vivo (Fatehullah et al., 2016).

TH+ neurons in the hMLOs exhibited biochemical and electro-

physiological properties of mature mDA neurons and expressed

functional DA receptors (Figures 4K and 4L). Intriguingly, these

neurons receive inputs from other neuronal cells in the hMLOs,

indicating that they make functional neuronal networks, demon-

strating the potential utility of the hMLO in evaluating the degree
(G) The formation of NM-like granules was accelerated by L-DOPA (50 mM) and D

and (G0 0 0) are high-magnification images of the black rectangle.

(H) NM-like granules were not observed in murine MLOs. Note that both the hMLO

Black scale bar, 500 mm. White scale bar, 20 mm.

See also Figure S3.
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of synaptic competence and connections. In our hMLOs, we

observed other neuronal cells such as GABA+ neurons (Fig-

ure S2I), consistent with in vivo midbrain (Korotkova et al.,

2004). Although our transcriptome analysis showed that the

hMLOs resemble prenatal midbrain and mDA neurons, future

studies using single-cell transcriptome analysis may be required

to further validate the similarity of the genetic expression pro-

gram among them (Camp et al., 2015).

Strikingly, we found that humanmDA neurons within 3DMLOs

could produce NM-like granules while human mDA neurons in

2D culture and mouse mDA neurons within 3D MLOs did not.

NM is a dark, complex, and insoluble pigment particularly

concentrated in themDA neurons of SN and in the noradrenergic

neurons of locus coeruleus, the two brain areas mostly affected

by PD (Fedorow et al., 2005). The origin and physiological func-

tion of NM remain controversial: several lines of evidence have

demonstrated possible protective features of NM; however,

many other studies concluded that NM is a toxic byproduct of

DA synthesis in mDA neurons (Zecca et al., 2003) and that NM

may trigger immune activation in the PD patient’s brain (Zhang

et al., 2011). The paucity of knowledge of NM has been due to

the limited availability/accessibility of human NM, which could

only be extracted from human postmortem midbrain tissues.

Given the robustness of our protocol to generate human mDA

neurons that readily produce NM granules, our 3D hMLOs pro-

vide a source of human DA neuron-derived NM in situ. Thus

our method offers a potentially useful approach to study NM

granules and associated proteins from PD patient-derived

iPSC lines, which may shed light onto the underlying pathophys-

iological mechanisms of PD.

EXPERIMENTAL PROCEDURES

Cell Culture and Generation of hMLOs

The hESC lines H1 (WA01) and H9 (WA09) were cultured feeder-free on Matri-

gel (BD Biosciences) with mTeSR1 (StemCell Technologies, Inc.). hPSC lines

before passage 40 were used to generate hMLOs. The hPSCs were dissoci-

ated to single cells to form uniform EBs in neuronal induction medium supple-

mented with 10 mM ROCK inhibitor Y27632 (Calbiochem). On day 4, hMLOs

were cultured with the addition of midbrain patterning factors, 100 ng/mL

SHH-C25II (R&D Systems) and 100 ng/mL FGF8 (R&D Systems) for 3 days.

When neuroectodermal buds were starting to extrude, the hMLOs were

embedded in 30 mL of reduced growth factor Matrigel and grown in tissue

growth induction medium containing 100 ng/mL SHH-C25II and 100 ng/mL

FGF8. After 24 hr, the hMLOs were embedded in Matrigel, transferred into

ultra-low-attachment 6-well-plates (Costar) containing the final organoid dif-

ferentiation media, which was supplemented with 10 ng/mL BDNF (Pepro-

tech), 10 ng/mL GDNF (Peprotech), 100 mM ascorbic acid (Sigma-Aldrich),

and 125 mM db-cAMP (Sigma-Aldrich), and cultured using an orbital shaker.

The medium was replenished every 3 days. A detailed protocol of generating

hMLOs is described in the Supplemental Experimental Procedures.

Human Brain Dissection

The ventral half of the midbrain was dissected from second trimester prenatal

brainstem under visual inspection using a scalpel and hand-held dental drill

(Table S5). Cases were donated with informed consent of the mother and
A (50 mM) treatments. Red scale bar, 2 mm. Black scale bar, 100 mm. (G0), (G0 0 ),

and mMLOs contain TH+mDA neurons (bottom panels). Red scale bar, 2 mm.
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were selected on the basis of (1) the absence of any congenital anatomical ab-

normality uponmacroscopic brain inspection and (2) the absence of anymajor

genetic defect noted on prenatal testing. The IRB approval is from theWestern

IRB (study number, 1126332; WIRB protocol number, 20111080).

Immunohistochemistry and NM Staining

Immunohistochemistry of all organoids and tissue samples was performed as

described in the Supplemental Experimental Procedures. Fontana-Masson

staining to detect NM was performed according to the manufacturer’s proto-

col. A detailed description is available in the Supplemental Experiment

Procedures.

RNA Sequencing and Bioinformatics Analysis

RNA-seq was performed using hMLOs, 2D-DA neurons, or postmortem

midbrain tissues (Table S5). For RNA-seq analysis, reads were mapped with

TopHat2-2.0.12 (Kim et al., 2013), reads were counted using the R package

GenomicAlignments (Lawrence et al., 2013), and differential expression was

calculated using DESeq2 (Love et al., 2014). A detailed description is available

in the Supplemental Experiment Procedures.

Electrophysiology

Excitability and synaptic transmission of neurons within hMLOs were studied

by whole-cell patch clamp in either voltage- or current-clamp mode. See also

Supplemental Experimental Procedures.

ACCESSION NUMBERS

The accession number for the RNA-seq data reported in this paper is

E-MTAB-4868.

SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes three figures, five tables, and
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online at http://dx.doi.org/10.1016/j.stem.2016.07.005.
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