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Analyzing Spur-Distorted Impedance Spectra for the QCM
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The quartz crystal microbalance (QCM) is a sensitive device for determining the properties of materials loading it. One of the
fundamental means of making these measurements is the so-called impedance (or admittance) spectra method. The resonant
properties of the piezoelectric QCM sensor are measured over a spectral range in the neighborhood of a resonance, both with
load and without load. The changes in the spectrum upon loading can be compared to models that describe the changes based on
the mass density, the shear modulus, and the viscosity of the load. This comparison can be made with confidence so long as the
spectrum corresponds to the model assumption of a single main resonance. Often, there exists a spurious resonance lying above
the main resonance which is not included in the models. This can change the shape of the spectrum in ways not included in the
model analysis. We describe a method we have used that separates the spur resonance from the main resonance, permitting the
parameters of the main resonance to be isolated from that of the spur. These corrected parameters of the main resonance can then
be used with confidence in model analyses.

Copyright © 2009 Sae Moon Yoon et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

1.1. Basic Description. The quartz crystal microbalance
(QCM) has become an important tool for monitoring in
many types of nanolayer assemblies of organic and biological
films. A nice overview for its use in biomolecular interactions
is given by Cooper and Singleton [1]. The QCM sensor
is a resonant piezoelectric device and is described in a
recent book [2]. It can resonate at its fundamental frequency
and also at its odd multiple harmonics as discussed in a
review by Buttry and Ward [3]. It consists of a disk with
electrodes on opposing faces. When a load is placed upon
the quartz crystal, changes in its resonant behavior permit
an evaluation of certain properties of the load. A variety of
electronic methods can be used to determine these changes,
with some of them nicely given by Arnau [4]. This has
made it very valuable not only to determine the amount
of material in the load, but additional load properties such
as stiffness and viscosity as well. Fortunately, the resonance
behavior has been shown to be accurately represented by a
simple equivalent circuit permitting the use of sophisticated
electronic techniques to determine changes in the resonant

properties. The full electrical equivalent for the QCM has
been shown to be described by a so-called transmission
line model [5] which can be simplified under conditions
near a high Q resonance to the simple equivalent circuit as
discussed by Cernosek, Martin, Hillman, and Bandey [6].
The equivalent circuit is called the Butterworth Van Dyke
(BVD) circuit [7, 8] and is shown in Figure 1.

The elements of the right hand branch contain the
motional information. The changes due to loading can be
directly incorporated as changes in these elements. The
changes due to loading can be incorporated simply as
changes in the values of the three elements in the right hand
branch. An alternate method is to preserve the values of
three elements, taking them to be the value corresponding
to the unloaded crystal. The changes can be incorporated as
small additional elements and this allows one to focus on the
changes.

1.2. Three Key Methods of Study. The three most common
methods for studying the resonant behavior of the QCM are
(A) using the sensor as the active element in an electronic
oscillator, (B) examining the transient decay of the current
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Figure 1: The Butterworth Van Dyke equivalent circuit.

after initial excitation of the sensor, and (C) recording the
spectral behavior and its changes. The oscillator method
is the most economical and is thus quite popular. From
the measurement, it can determine the resonant frequency
of the BVD circuit. More recently, it has become possible
to also obtain the series resistance R. Generally, this is
restricted to a single harmonic, although recently a dual
harmonic oscillator has been described [9]. Two of the key
properties of the resonance are its resonant frequency and
the loss or energy dissipation. in the resonance. Using the
oscillator approach, two of the properties of the circuit can
be determined at a given harmonic, the resonant frequency
fN and the resistance RN.

The transient decay method [10] excites the QCM at
its resonant frequency, then shorts the crystal and records
the time behavior of the decaying current. This has been
designed such that the decay currents for the various
harmonics can be sequentially recorded. From the current
decay for each harmonic, it is possible to determine the
resonant frequency and the decay time. The decay time
is related to the dissipation. Again, two of the important
properties at each harmonic resonance are determined, in
this case the resonant frequency fN and the dissipation DN.
These are discussed in more detail by Rodahl, et al. [11]. The
ability to examine the behavior of multiple harmonics has
been shown to be useful for interpreting the properties of
the load. Although coming at an increased cost, it has shown
itself to be extremely valuable in data analysis, particularly
when studying viscoelastic loads.

Of primary interest in this paper is the study of the
changes in the spectral behavior of the BVD circuit. This has
come to be known as the “impedance” method and is used
extensively. There have been a number of creative methods
for determining the parameters of the load from spectral
data, which demonstrates the versatility and flexibility of
the impedance method. One, for example, is described by
Berg et al. for the special case [12] in which an oscillating
surface of quartz contacted an adjacent sphere. A somewhat
different procedure was developed by Wang et al. [13] to
use the admittance measurements to study gel swelling
and deswelling. Another unusual application involves the
use of impedance analysis for the measurement [14] of
microliter volumes of liquid drops placed onto the crystals.
The possibility of a scanning QCM was demonstrated by
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Figure 2: The experimental points for a 5 MHz fundamental crystal
in water are illustrated by the circles (conductance) and squares
(susceptance). The spectrum of the calculated 4 element BVD
circuit is shown by the solid and dashed lines.

Oyama et al. [15], where scanning resolutions of 1 to
2 mm resolutions were found possible. There are many
other nonstandard uses of QCM impedance analysis, which
demonstrate that it is a very useful technique for many
applications.

However, we focus here on the standard techniques and
the possible degradations of the experimental data due to
spurs. We consider the standard method to mean that the
impedance being studied is that of a flat, AT-cut quartz
disc with planar loads that can be modeled using a one-
dimensional analysis. Electrically, the resonant behavior can
be summarized in terms of the admittance of the BVD
circuit, which is the ratio of the current to applied voltage.
This is the inverse of the impedance. A common method is to
show the real part of the admittance ( the conductance G ) or
the imaginary part of the admittance (the susceptance B) as a
function of the frequency. These are shown in Figure 2 with
the units of G and B being the millisiemen (mS). The spectra
for various harmonics can be recorded allowing for the
study of multiple harmonics in this case as well. The ability
to make a full determination of all three of the motional
parameters in the BVD circuit drives much of the interest in
this methodology.

The experimental data shows the behavior of a 5 MHz
crystal in deionized 18 MΩ · cm water. The calculated values
were obtained by fitting the data to the BVD circuit.
Although the fit is not perfect, it is very good and demon-
strates the validity of the BVD representation. The resonant
frequency is identified as the frequency of maximum con-
ductance. The width of the peak is related to the loss, or
dissipation of the resonance.

Another informative view of the admittance spectrum
is a plot of the conductance along the abscissa and the
susceptance along the ordinate, as shown in Figure 3.
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Figure 3: Admittance circle showing the circular form when the
abscissa and ordinate scaling are identical.

If the same units are used on both axes, then it can be
shown that the admittance plot is a circle. The diameter of the
circle is the maximum conductance value. The circle center
lies above the zero value of the ordinate and is due to the
parallel capacitance CP.

The agreement of the BVD description with experimental
results shows that we can use these representations of the
resonance to discuss the fitting procedure. There are sources
that can distort these BVD diagrams and are discussed in the
following section.

1.3. Deviations from the BVD. If a sufficiently large frequency
span is taken for the spectrum, spurious resonances become
visible. These are nicely described by Bottom in his classical
text [15]. Taking the conductance data for several harmonics
of the crystal in water, we observe, for example, as shown
in Figure 4, the presence of an additional peak. The abscissa
has been taken to be the index of the frequency plot. The
frequency itself could not be used because it covers several
harmonic ranges.

The additional resonance seen to the high frequency side
of the main resonance is called a spurious resonance, or spur.
The spur overlaps the main spectral peak giving rise to a
distortion. We will show that the spur can be fully integrated
into the fitting scheme to eliminate this source of distortion.
The information in the susceptance data is better seen using
the circular admittance plot.

The large admittance circles for the main resonances are
visible. In addition, the smaller admittance circles for the
spurs are also visible. The effects of the parallel capacitance,
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Figure 4: The conductance spectra are shown for several harmonics
in the case of the quartz crystal having one face immersed in water.
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Figure 5: The circular admittance spectra over several harmonics.

CP , are seen as the offset of the circles’ centers along the ordi-
nate. This vertical offset increases for increasing harmonic
resulting from the increasing capacitive susceptance with
increasing frequency. This capacitance reflects the dielectric
capacitance of the quartz disk as well as the capacitance of
wires and cables used to connect the crystal. The constancy
of this capacitance is clearly seen if we subtract a susceptance
value corresponding to 16 pf from each admittance circle. In
that case, we then observe Figure 6.

In addition to the capacitance effect of CP , we can also
note that the admittance circles are not tangential to the
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Figure 6: The admittance circles corrected for a constant 16 pf
capacitance.

ordinate as would be expected from the simple BVD circuit.
There is a horizontal offset that increases with increasing
harmonic. This is not a large effect, but its effect can
be described by the presence of a frequency dependent
conductance in parallel with the BVD circuit. See, for
example, the recognition and description of such a parallel
path by Lucklum et al. [16].

These deviations are easily summarized in the circular
admittance plots. The capacitance CP gives rise to a vertical
shift in the circle. The spurs are evident from the extra circle
on the high frequency end, and a parallel conductive loading
appears as a shift of the circle to the right.

2. Experimental Details

To obtain the experimental data used for fitting, we used
quartz crystals obtained from Maxtek, Inc. The crystals had
a diameter of 1 inch and were plano-plano 5 MHz AT cut
crystals having asymmetrical electrodes. The thicknesses are
in the range of 331 μm. The smaller electrode defined the
common areal region and had an areal value of 3.419 ×
10−5 m−2. The crystals were placed in the standard polyvinyl
chloride holder was provided by Maxtek. The glass cell
provided by Maxtek was used. The glass cell and the circular
crystal holder are shown in Figures 7(a) and 7(b).

The PVC crystal holder shown in Figure 7(b) contained
the crystal and was connected to the connector shown on the
glass portion of the cell. O-rings sealed the crystal on both

(a) (b)

Figure 7: (a) Two types of glass cells are shown. The one on the left
was used in this study. The PVC crystal holder is shown with the
black O-ring. (b) The crystal is shown In front of the holder along
with the sealing O-ring.

Cp

Gp

R1 R2

L1 L2

Cs1 Cs2

Figure 8: The equivalent circuit used at each harmonic.

sides. The holder was held to the cell by a spring clip. The
circular crystal holder terminated in an SMB connector. To
connect this unit to the Agilent 4291-A Impedance probe, it
was necessary to use an approximate 1 foot length of SMB
cable, and then an SMB to BNC adapter. The instrument
used for capturing the spectra was the Agilent 4294 Precision
Impedance Analyzer.

The crystal was cleaned by immersion in an ethanol
solution and drying with a gentle stream of nitrogen. It was
then placed in an oxygen plasma unit. Deionized water of
18 MΩ · cm purity was used in the glass cell.

3. Fitting Procedure

The experimental data was treated in a fitting procedure
designed to extract the values of the resonance properties. In
the ideal case, the circuit shown in Figure 1 is appropriate.
In such a case, the spectrum is described by a Lorentzian
shape and a fit to this shape would be appropriate. For the
high quality (low dissipation) circuits occurring with the
QCM, the Lorentzian spectra exhibit a symmetry about the
resonant frequency. As we have seen, spurs can distort the
symmetry of the resonance. In addition we have also seen
that the parallel capacitance CP can displace the Lorentzian
circles vertically and shunt conductances can displace them
horizontally.

To incorporate the various aspects of the equivalent
circuit, we use the circuit shown in Figure 8.
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CP is the parallel capacitance, including all of the
connecting adapters and cables. GP represents the effects due
to a conductive shift of the circle to the right. The branch
with the subscript 1 represents the motional aspects of the
main resonance of the quartz crystal, while that with the
subscript 2 represents the resonant spur. We can write the
admittance in terms of the individual circuit elements shown
above as

Y = G + jB

= GP + jωCP +
1

jωL1 +
(
1/ jωCS1

)
+ R1

+
1

jωL2 +
(
1/ jωCS2

)
+ R2

.

(1)

However, we have used an alternate expression for this same
admittance in terms of parameters more convenient for the
fitting procedure, and is shown below:

Y = GP + jωCP +
G1max

1 + j(1/D1)
((
f / f10

)− ( f10/ f
))

+
G2max

1 + j(1/D2)
((
f / f20

)− ( f20/ f
)) .

(2)

The values used instead of L,CS, and R are Gmax,D, and f0.
G1max is the maximum conductance of the main resonance,
D1 is the dissipation of the main resonance peak and f10 is
the resonant frequency of the main resonance. Dissipation is
simply the inverse of the more familiar quality factor or Q of
the circuit. It is treated in more detail by Rodahl et al. [10].
Relations connecting the parameters are as follows:

G1 = 1
R1

,

f10 = 1
2π
√

(L1)(CS1)
,

D1 = R1
2π f10L1

.

(3)

These connect the parameters describing the main resonance
branch. There are a set of equivalent connecting equations
for the spurious resonance branch. In order to fit the
experimental spectra to (2), it is necessary to provide
some “guess” values for these parameters. The experimental
spectra are a record of the conductance and the susceptance
over a range of frequencies. It is possible to obtain spectra
with the number of frequencies in the range of 50, 100, 200,
or 400 or more. We typically used the spectra consisting of
400 frequency values. We generated a subroutine with which
we obtained starting guess values from the experimental
spectra. The guess value of Gmax is obtained by recording
the maximum value of G over a resonance. The frequency
at which this occurs is taken as the guess value for the
resonant frequency f0. To obtain a guess value for the
dissipation is slightly more complex. We find the maximum
value of the susceptance in the resonance region and take
its frequency fBmax. We calculate the frequency difference
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Figure 9: The calculated fit using only the main resonance (blue)
with the experimental data shown in red circles.

Δ f = ( f0 − fBmax). Twice this value is taken as the full
width at half maximum for the resonance. The guess value
for the dissipation D is then taken to be (2Δ f / f 0). To fit
a single main resonance (without spur), 5 guess values are
required; CP ,GP ,G1max, f10, and D1. For fitting to a main
resonance with a spur, three additional guess values are
required: G2max, f20, and D2.

While there are many other possible ways to do the
fitting,we chose to use the method called “genfit” in the
Mathcad program. It is described in their literature as a least-
squares nonlinear regression. For those more familiar with
these methods, they also describe it as using a Levenberg-
Marquardt approach to the minimization.

In beginning this experiment, we were not certain
that the spur resonance could be included in the fit to
a resonance. It was possible, for example, that the three-
element equivalent circuit for the spur was too simplistic,
or it was possible that the fitting procedure would not
permit the inclusion of the large number of variables. We
examined this possibility by an initial demonstration. For
this demonstration, we have taken one case of the data for
the seventh harmonic and compare the results of the fitting
with and without spur inclusion.

In Figure 9, the main resonance of the conductance at
the seventh harmonic is shown. The fits are made to the
conductance data. When the spur effect is neglected, a careful
look at the spectrum indicates that the experimental curve
does not have the symmetrical shape expected for a single
resonance. Even a possible shift in the position of the peak is
suggested. We believe this to be the result of the overlap of the
spurious resonance with the main resonance. We include the
first spur of the seventh harmonic and obtain the following
results.

Again, the fits were made using only the conductance
data with the guess values being derived from the conduc-
tance spectrum as described earlier. The fit to the susceptance
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Figure 10: The seventh harmonic data are shown including the
first spur. The experimental G and B values are shown by the red
circles and the blue triangles, respectively. The calculated fits using
the equivalent circuit of Figure 8 are shown by the solid red line and
dashed blue line.

Table 1: Values of circuit parameters without correcting for spur
(black) and with correcting for the spur (red).

N Fmain Gmain Dmain

MHz mS 10−6

1 4.993348 2.45958 353.316

4.993348 2.46127 352.953

3 14.970878 1.33199 188.701

14.970874 1.33314 187.991

5 24.949092 0.844077 155.258

24.949080 0.839339 153.141

7 34.936778 0.573590 145.474

34.926700 0.549358 136.959

data is also extremely good. The quality of the fits provided
confidence in the fitting procedure. By including the effects
of the spur resonance, we feel that we can be more assured
of the accuracy of the elements representing the main
resonance. The accuracy of the representation for the main
resonance is important since the changes due to the load
are calculated from the one-dimensional electromechanical
model which represents the single main resonance.

4. Results of the Fitting

This same procedure was used to fit the 1st, 3rd, and
5th harmonics as well. To show the changes incurred by
including the spur, we have listed in Table 1 the values of the
characteristics of the main resonance determined without the
spur correction (black) and with the spur correction (red).

The differences do not appear to be large. However, we
must remember that the changes induced by the additional

Table 2: Values of the BVD circuit at the various harmonics are
given.

N R L CS
Ω H f F

1 406.57 0.03668 27.70

406.29 0.03369 27.69

3 750.76 0.04230 2.672

750.11 0.04242 2.664

5 1184.7 0.04867 0.8359

1191.4 0.04963 0.8200

7 1743.4 0.05461 0.3802

1820.3 0.06056 0.3429

Table 3: Values calculated from the one-dimensional theory.

N Res. Freq. Induct. CS
Hz H f F

1 4999210 0.03886 26.0833

3 15040717 0.03897 2.8736

5 25073036 0.03897 1.0338

7 35106021 0.03898 0.52733

9 45137744 0.03898 0.31898

11 55169313 0.03898 0.21352

13 65200803 0.03898 0.11259

Table 4: Values of Cp and Gp fitted to the data for the harmonics.

N Cp (pf) Gp (μS) Rp (KΩ)

1 16.134 4.0271 248.32

3 15.884 10.784 92.73

5 15.909 22.985 43.507

7 16.006 45.050 22.198

mass of the film and liquid are very small. So it is necessary
to obtain a relatively high accuracy for these values. Using (3)
it is possible to obtain direct relations between the values of
f0,Gmax, and D with L,CS, and R. These results are shown
in Table 2 in the more familiar values of the BVD circuit
elements.

An unexpected feature of these results is that the
inductance appears to change with the harmonic. While not
a major point of study here, we include the values calculated
from the one-dimensional theory for comparison. The
inductance was found to be almost constant, independent of
harmonic. The calculated values are shown in Table 3.

We extended the values to the 13th harmonic to ensure
the constancy of the inductance with harmonic number. The
calculated changes are very small, which made the results
of the measurements somewhat surprising. This is perhaps
worthy of further study, but was not pursued here.

While we have not dwelled on the corrections for the
parallel capacitance and the parallel conductance, these were
also used in the fitting algorithm. For interest, these values
are shown in Table 4.



Journal of Sensors 7

34.9734.9634.9534.9434.9334.9234.91

Frequency (MHz)

Experiment
Main

Main + 1 spur
Main + 2 spurs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
on

du
ct

an
ce

(m
S)

Figure 11: Fitting the conductance of the 7th harmonic containing
two spurs.

As can be seen, the values for CP are almost constant
indicating again the invariance of the dielectric parameters
with frequency. The conductance values are included only
to indicate that the horizontal shift in the admittance
circle can be accounted for. Because resistance is a more
familiar variable than conductance, we have converted the
conductance to resistance, shown in the last column. Except
to remark on the monotonic behavior, we make no further
comment on this variable.

The successes obtained in fitting the main resonance,
spurs and parallel admittances were very satisfying. In the
case of the 7th harmonic, a second spur was seen above the
first spur. We extended the treatment discussed above to have
an additional three elements branch to describe a second
spur and attempted a fit to see whether the fitting routine was
robust enough to include additional variables. The results are
shown in Figure 11.

The agreements fitting to only the main resonance (blue),
to the main and first spur (green) and to the main and both
spurs (red) are very satisfying.

5. Conclusion

One major method for determining the physical parameters
of loads placed on the quartz crystal microbalance is the
admittance (or impedance) method. The recorded values
caused by changes in the electrical measurements of the
admittance spectrum are fit to a model. A major perturba-
tion that can distort the measured electrical spectrum is the
presence of spurious resonances. In addition, perturbations
arising from the connection of the crystal transducer to the
measurement apparatus can also distort the spectrum. We
have shown a method by which these three effects can be
quantitatively accounted for, increasing the confidence in the
accuracy of the fit.
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